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A B S T R A C T
Ransomware is one of the most infamous kinds of malware, particularly the “crypto” subclass, which
encrypts users’ files, asking for some monetary ransom in exchange for the decryption key. Recently,
crypto-ransomware grew into a scourge for enterprises and governmental institutions. The most recent
and impactful cases include an oil company in the US, an international Danish shipping company, and
many hospitals and health departments in Europe. Attacks result in production lockdowns, shipping
delays, and even risks to human lives.

To contrast ransomware attacks (crypto, in particular), we propose a family of solutions, called
Data Flooding against Ransomware, tackling the main phases of detection, mitigation, and restoration,
based on a mix of honeypots, resource contention, and moving target defence. These solutions hinge
on detecting and contrasting the action of ransomware by flooding specific locations (e.g., the attack
location, sensible folders, etc.) of the victim’s disk with files. Besides the abstract definition of this
family of solutions, we present an open-source tool that implements the mitigation and restoration
phases, called Ranflood.

In particular, Ranflood supports three flooding strategies, apt for different attack scenarios. At
its core, Ranflood buys time for the user to counteract the attack, e.g., to access an unresponsive,
attacked server and shut it down manually. We benchmark the efficacy of Ranflood by performing a
thorough evaluation over 6 crypto-ransomware (e.g., WannaCry, LockBit) for a total of 78 different
attack scenarios, showing that Ranflood consistently lowers the amount of files lost to encryption.

1. Introduction1

Liska and Gallo (2016) define ransomware as a “blan-2

ket term used to describe a class of malware that is used to3

digitally extort victims into payment of a specific fee”.4

A common kind of ransomware is of the crypto class,5

which holds hostage the files of the victim by encrypting6

them and then asking for a ransom for their decryption.7

Background— In the last 10 years, the advent of new8

technologies changed the approach of ransomware (Green-9

gard, 2021). Specifically, two innovations represented the10

turning point for the latest generation of ransomware: more11

efficient encryption mechanisms and the widespread adop-12

tion of cryptocurrencies. Stronger encryption increased ransom-ware13

::::
More

:::::::
efficient

:::::::::
encryption

::::::::
increased

::::::::::
ransomware

:
dangerous-14

ness both thanks to algorithms’ speed, which shortened the15

useful timeframe that detectors have to trigger users and/or16

mitigations, and their strength, thwarting any attempts at re-17

versing the process without a key. Cryptocurrencies pro-18
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vided criminals with reliable means to monetise attacks and 19

protect their anonymity. 20

Just considering the last 5 years, we saw attacks becom- 21

ing more and more frequent, with successful ones having 22

strong side effects in global logistics, markets, and health- 23

care. NotPetya, which heavily targeted Ukraine in 2017 (tak- 24

ing offline some Chernobyl nuclear plant monitors (Griffin, 25

2017) and ministries, banks, and metro systems (Perlroth 26

et al., 2017)), impacted at the global scale by blocking the 27

logistics operations (and, thus, the hubs shared with other 28

collaborators/competitors) of the Danish shipping company 29

Maersk (Chappell and Dwyer, 2017), among many others. 30

The attack, in 2021, to
::
on the US Colonial Pipeline company 31

:::::::::
companies caused fuel shortages in 5 states, leading to panic- 32

buying, a surge in fuel prices, and fuelling disruptions (Joe 33

et al., 2021). Attackers did not spare the health sector, which, 34

since 2020, has been undergoing heavy pressures due to mass 35

hospitalisation of COVID-19 cases and the management of 36

national vaccination campaigns. Attacks have been world-wide 37

::::::::
worldwide

:
— the heaviest happening in Ireland (Person and 38

Padraic Halpin, 2021) and Italy (Abrams, 2021), similarly 39

to the infamous WannaCry, which targeted in 2017 the UK 40

healthcare system (Sheila A. and Tracy P., 2017) — and re- 41

sulted in outages and delays of vital medical procedures. 42

Contribution —
::::::::
Honeypot

::::::::::
Techniques

:::::::
against

::::::::::::
Ransomware43

To contrast crypto-ransomware attacks, we propose
:
In

::::
this 44

::::::
article,

::
we

:::::
focus

:::
on

:::
the

:::::
usage

::
of

::::::::
honeypot

:::::::::::
mechanisms

:::
for 45

:::::::::
contrasting

::::::::::
ransomware,

::::
and

::
we

::::::::
introduce

::
an

::::::::
advanced

::::::::
honeypot46

::::::::
modality,

:::::
which

:::::::::
overcomes

::
the

:::::::::
limitations

::
of

::::::
current

:::::::::::::
honeypot-based47
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::::::::
solutions.48

::
In

::::::
general,

:::::::::
honeypots

::::::::
represent

::::::::
sacrificial

::::::::
resources

::::
that49

:::::::::::
administrators

::::
use

::
to

:::::
either

:::::
detect

:::::
and/or

:::::
ward

::
off

:::::::::
malicious50

::::::::
intrusions.

::::
The

::::
idea

:
is
::
to
:::::::
provide

::::::::::::
easy-to-access

:::::
decoy

::::::::
resources51

::::
that,

::::
once

::::::::
accessed,

::::::
expose

:::
the

::::::
attacker

::::
and

:::::::
possibly

::::
slow

::
it52

:::::
down.

:
53

:::
We

:::::::
dedicate

:::::::::
Section 3.1

::
to

::::::
discuss

::
in

:::::
detail

:::
the

:::::::::
limitations54

::
of

:::::::
existing

::::::::
honeypot

:::::::::
techniques

:::
and

:::::::::
Section 2

:
to
:::::::

provide
::
a55

::::::
general

::::::
review

::
of

::
the

:::::::
existing

::::::::
proposals.

:::::::
Briefly,

:::::
basic

:::::::
honeypot56

::::::::
techniques

::::::
detect

::::::::::
ransomware

::
by

::::::::
deploying

::::::::
honeypot

::::::
nodes,57

:::
e.g.,

::
in
:::
the

:::::
same

:::::::
network

::
as

:::::
those

::
of

::::
real

:::::
users,

:::
that

:::::::
contain58

:::::
decoy

::::
data.

:::::::::
Advanced

::::::::
techniques

::::::::::::::::::::::::::::::::::::::::::::
(Moore, 2016; Al-rimy et al., 2018; Kok et al., 2019)59

::::
omit

::::
using

::::::::
honeypot

:::::
nodes

:::
and

:::::
rather

:::::
inject

:::::
decoy

::::
files

::::::
directly60

:::
into

::::
real

:::::::
systems

::::
(e.g.,

:::
the

:::::::::
computers

:::
of

:::
the

::::::
users).

::::::
While61

::::
these

::::::::
solutions

:::::::
increase

::
the

::::::::
available

:::::::
detection

:::::::
surface

:::::::::
(essentially,62

:::
they

:::::
make

::::
any

::::
node

::
of

::
a
:::::::
network

:
a
:::::::::
honeypot),

::::
they

:::::::
present63

:::::::
problems

::::::
linked

::
to

:::
the

::::::::::::
pervasiveness

::
of

:::
the

::::::::
honeypot

:::::
files.64

:::
For

:::::::
example,

::
to
:::::
cover

:::
the

:::::
entire

:::::
attack

:::::::
surface

::
of

:
a
::::
node

::::
one65

:::::
would

::::
need

::::::
decoy

::::
files

::
in

:::
all

:::::::
possible

::::::
folders

::
of

::::
that

:::::
node66

:::
and

::::
keep

:::::
track

::
of

::::::
actions

::
on

:::
all

:::::
those

:::
files

:::::::::::::
(Moore, 2016).67

:::::::::::
Contribution

::
To

:::::::::
overcome

:::
the

:::::::::
limitations

:::
of

:::::::
existing68

:::::::
honeypot

::::::::::
techniques,

:::
we

::::::
present a family of solutions based69

on a mix of honeypots, resource contention, and moving tar-70

get defence. The underlying principle is that of flooding spe-71

cific locations of the disk (e.g., the attack location, user fold-72

ers, etc.) with files. In Section 3 we show how this principle73

covers the
:::::
decoy

::::
files.

:::::::::::
Interestingly,

::::
our

::::::::
technique

:::::::
extends74

::
the

::::::::
coverage

::
of

::::::::
honeypot

::::::::::
mechanisms

::
to

::
the

:
three main phases75

of ransomware contrast: detection, mitigation, and restora-76

tion. We call this new family of solutions Data flooding77

against Ransomware (DFaR).
::
We

:::::::
dedicate

:::::::::
Section 3

:
to

::::::::
introduce78

:::
and

::::::
discuss

:::
the

:::::::
concepts

:::
that

::::::::::
characterise

:::
the

:::::
DFaR

::::::::
approach.79

80

Besides presenting DFaR from a theoretical point of view,81

we present
::::
Then,

:::
we

:::
put

:::
into

:::::::
practice

:::
our

::::::
theory

::
by

:::::::::
introducing82

an open-source tool, called Ranflood, which implements the83

mitigation and restoration phases of the DFaRfamily
:::::
DFaR.84

At its core, Ranflood buys time for the user to coun-85

teract an ongoing attack, e.g., to access an unresponsive,86

attacked server and shut it down manually. Detailing the87

aforementioned contrast techniques, Ranflood follows
:
In

::::::
detail,88

:::::::
Ranflood

::::::::::
implements a dynamic honeypot approach, that

:::::
which89

consists in generating decoy files and confusing the genuine90

files of the user with bait ones that the ransomware is lured91

into encrypting (making it waste time on them rather than92

on the actual files of the user). This confusion constitutes93

the moving-target-defence part of the approach. The third94

prong, that of resource contention, happens over IO access95

(e.g., for reading and writing on disk), which the ransomware96

must share with the (IO-heavy) Ranflood flooding routines.97

The generation of (bait) files affords a wide design space98

spanning over different formats, structuresand contents, which99

we start exploring in this work with three ,
::::
and

:::::::
contents.

:::
In100

:::
this

::::::
article,

:::
we

::::::
present

:::::
three

:::::
novel

:
strategies, briefly intro-101

duced hereinafter and fully detailed in Section 4:102

• Random generates files of different sizes and formats103

(those mostly targeted by ransomware (Lee et al., 2019)) 104

with random content. The strategy has no prerequi- 105

sites , once a target location is chosen
::::::
besides

:::
the

:::::::
provision106

::
of

:
a
::::
disk

:::::::
location

::
to

::::
flood; 107

• On-the-fly performs a copy-based flooding using the 108

actual files of the user. Besides requiring a target lo- 109

cation, this strategy can entail a preliminary procedure 110

(which shall run under ordinary situations, i.e. not 111

during an attack) that collects lightweight file integrity 112

information (e.g., checksum) of the user’s files. This 113

preliminary part is optional, but it can increase the ef- 114

fectiveness of the strategy by avoiding to copy
:::::::
copying 115

files that have already been encrypted by ransomware; 116

• Shadow is also a
::::
kind

::
of copy-based flooding strategy. 117

Besides the target location, Shadow entails a neces- 118

sary preliminary procedure that creates backups of the 119

user’s files—usually heavier than the integrity infor- 120

mation collected by the On-the-Fly strategy—which it 121

uses as
:::
the source for the copies. This strategy trades 122

disk occupancy for increased effectiveness w.r.t. On- 123

the-Fly, since all files available before an attack are 124

useful
::
in

::
a

::::::
backup

:::
are

::::::::
available for the flooding rou- 125

tine. 126

After presenting the general approach of Ranflood, its 127

flooding strategies, and its software architecture in Section 4, 128

we dedicate Section 5 to present a thorough benchmark of 129

the efficacy of Ranflood. To perform this task, we consider 130

6 pieces of crypto-ransomware and measure the loss rate of 131

user files (due to encryption) first without Ranflood and then 132

using each of the three flooding strategies. Since the time- 133

frame of execution can also be important, we simulate four 134

incremental delays in the triggering of Ranflood, after the 135

start of the ransomware. This amounts to 78 different sce- 136

narios. The results from Section 5 confirm our hypothesis: 137

Ranflood consistently lowers the amount
:::::::
number of files lost 138

to encryption. 139

While studying and investigating the approach we de- 140

veloped for Ranflood, we found interesting future research 141

directions on detection, restoration, and on applications on 142

kinds of ransomware other than crypto ones. We report these 143

along with our concluding remarks in Section 6. 144

2. Related Work 145

Before presenting the contributions of this article, we 146

discuss related work on the existing techniques for contrast- 147

ing ransomware and relate these to our proposal. 148

Tracing an overview of the literature on anti-ransomware 149

techniques means dealing with two main branches. The first 150

defines
::::::
regards work created specifically for a family of ran- 151

somware, while the second, like
:::::::::::
second—like the family of 152

solutions presented here, is
:::::::
here—is of general application. 153

Within the first branch, we find mitigation techniques for 154

the Cryptolocker ransomware. For example, Chew and Ku- 155

mar (2019) presented a preventative technique based on al- 156

tering access control levels of files and folders to revoke writ- 157
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ing privileges during an attack. Lee et al. (2018) proposed a158

different approach, again targeting Cryptolocker, to recover159

from a ransomware attack by intercepting the decryption key160

of the ransomware either when the latter sends or receives it161

to/from its control server.162

The other, larger branch of anti-ransomware solutions re-163

gards techniques that one can deploy regardless of a given164

family of ransomware.165

For a general survey on (Windows-based) ransomware166

and the existing techniques for their detection and contrast,167

we point the reader to the thorough work recently published168

by Al-rimy et al. (2018), Kok et al. (2019), and Moussaileb169

et al. (2021). In the rest of this section, we focus on works170

that are the closest to ours. We organise the comparison171

with related work following the classification of the main172

phases of vulnerability management: detection, mitigation,173

and restoration.174

We summarise our analysis in Table 1 to provide an over-175

view and comparison of our proposal against the existing, re-176

lated solutions, looked from the perspective of their contrast177

strategy, the phases it applies to, its
:::
they

:::::
apply

::
to,

::::
their

:
cover-178

age, and the effort required from the user to apply
:::::::::::::
knowledge/effort179

:::
that

:::
the

:::::::
solution

:::::::
requires

:::
for

:::::::::::::
deploying/using it.180

Detection— Detection schemes aim to identify ransom-181

ware attacks by monitoring specific activities. Some propos-182

als use decoy files to detect ransomware. Moussaileb et al.183

(2018) use decoy folders and trigger a warning when a pro-184

cess passes through more than three of those folders. Moore185

(2016) proposed File Server Resource Manager (FSRM), a186

tool that triggers alerts when specific folders are modified in187

ways that are perceived as unusual w.r.t.the regular observed188

::
the

::::::::::::::::
regularly-observed

:
behaviour of the user. El-Kosairy189

and Azer (2018) worked on the placement of decoy folders190

to increase their likelihood of being the first victims of the191

ransomware, thus triggering a timely alert.192

Scaife et al. (2016a) presented CryptoDrop, a tool that193

performs the detection of ransomware following three main194

principles—detect file format change, measure the change195

distance between files, measure the change of file entropy—196

and two secondary ones—detect file elimination and identi-197

fication of a program that reads files of multiple formats but198

writes files in a single one. Another work in this category199

is HelDroid (Andronio et al., 2015), which works on mobile200

systems, and detects if an application attempts to lock or en-201

crypt the device without the user’s consent or if it displays202

some ransom request.203

Kharaz et al. (2016) introduced a dynamic analysis sys-204

tem, called UNVEIL, based on the idea that, to mount a suc-205

cessful attack, ransomware must tamper with the user’s files.206

UNVEIL automatically generates an artificial user environ-207

ment able to monitor processes’ interactions with user data208

and changes to the system’s desktop as telltale signs of ran-209

somware-like behaviour.210

Other solutions, e.g., the ones surveyed by Kharraz et al.211

(2015), hinge on detecting and preventing (zero-day) ran-212

somware attacks by looking at I/O requests and protecting213

the Master File Table (MFT) in the NTFS file system. 214

While the majority of proposals is host-based, network 215

activity too can offer opportunities for ransomware detec- 216

tion. Recently, some solutions proposed to use Software 217

Defined Networks (SDN) to detect ransomware. For exam- 218

ple, Cabaj et al. (2018) proved that an SDN-based analysis 219

of HTTP message sequences and of their respective content 220

sizes can lead to detecting ransomware from the CryptoWall 221

and Locky families. In a similar work, Akbanov et al. (2019) 222

use OpenFlow (an enabler of SDN) traffic analysis to detect 223

suspicious activities and to block infected hosts. 224

As seen here, honeypots are usually employed for detec- 225

tion. The approach of Data Flooding against Ransomware 226

can be seen as a new, dynamic interpretation of honeypots 227

that overcome the limitations of the existing approaches. We 228

review these more in depth in Section 3.1, followed by a de- 229

scription of how detection works in our paradigm in Sec- 230

tion 3.2.2. 231

Mitigation— Mitigation schemes strive to contrast the 232

effects of ransomware attacks. 233

Works in this category frequently adopt some declina- 234

tion of the moving target technique (also part of the Data 235

Flooding against Ransomware mitigation mechanism), e.g., 236

“masking” user files, so that the ransomware skips them dur- 237

ing the attack. 238

For example, Lee et al. (2019) analysed ransomware fam- 239

ilies and proposed a method that changes the extensions of 240

files to formats normally skipped by ransomware. 241

Another example is Gómez-Hernández et al. (2018) where 242

the authors proposed a general methodology called R-Locker 243

to thwart crypto-ransomware actions. It is based on the de- 244

ployment of honeypot archives, designed for the Linux sys- 245

tem, to expose the ransomware when it accesses these. In 246

addition to that, this approach can automatically launch steps 247

to solve the infection. 248

This category hosts also OEM-provided solutions, e.g., 249

Microsoft Windows 10 includes a “controlled folder access” 250

feature (Microsoft, 2022), which works by allowing only trust- 251

ed applications to access protected folders, configured by the 252

user. 253

Here, the work closest to our tool for ransomware miti- 254

gation, Ranflood, is the one by Lee et al. (2019), since they 255

both implement a moving target strategy. In addition to the 256

latter, Ranflood deploys a resource contention countermea- 257

sure that further mitigates the action of the malware. The 258

principle exploited by Microsoft’s solution is of a different 259

nature: it relies on user permissions to stop the action of a 260

possible rogue program, but it does not prevent it from acting 261

on any other, unprotected location. 262

Restoration— Restoration schemes concentrate on re- 263

covery the encrypted data after attacks. 264

An example of solutions in this category is ShieldFS (Con- 265

tinella et al., 2016), which relies on the integration between 266

an ad-hoc file system and a detector (we list ShieldFS here 267

since its main focus is recovery). When the detector recog- 268
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::::::
Strategy

:

D
et

ec
tio

n

M
iti

ga
tio

n

Re
st
or

at
io
n

Ge
ne

ric

D
ro

p-
in

so
lu
tio

n

::::::::
Publications

:

::::::::
Monitoring

:::
files

:

Scaife et al. (2016a)
Andronio et al. (2015)
Kharraz et al. (2015)
Kharaz et al. (2016)

:::
Key

::::::::
acquisition

Hassan (2019)
Kolodenker et al. (2017)

:::::::
Targeting

:::
files

:

Kharraz et al. (2015)
Moussaileb et al. (2018)

Moore (2016)
El-Kosairy and Azer (2018)

:::::::::
Ransomware

::::::
specific

Chew and Kumar (2019)
Lee et al. (2018)

:::
SDN

:::::
traffic

::::::::
monitoring

:

Cabaj et al. (2018)
Akbanov et al. (2019)

:::::
Restrict

:::::::::
permissions

:

Microsoft (2022)

:::::::
Extension

::::::::::
randomisation

:

Evans et al. (2011)
Lee et al. (2019)

:::::::
Honeypot

:::
files

:

Gómez-Hernández et al. (2018)

:::::::::
Self-Healing

::
file

::::::
system

Continella et al. (2016)

:::
Data

:::::::
flooding : :

†
: ::

‡ This Work

† not implemented in this article, ‡ copy-based flooding cf. Section 4

Table 1

::::
Table

:::::::::
comparing

::::::
related

:::::
works.

:::::
Each

::::
row

::
in

:::
the

:::::
Table

::::::::::
corresponds

::
to

::
a
:::::::
strategy

:::::
found

:
in
::::

one
:::
or

:::::
more

:::::
works

::::::
related

:::
to

::::::::
ours—the

::::
last

::::
row

::::::::::
corresponds

:::
to

::::
this

::::::
article,

:::
for

:::::::::::::::::
comparison—reported

::
in

:::
the

::::::::
rightmost

:::::::
column.

::::
The

:::::
other

:::::::
columns

:::::
report

:::::::::
properties

::
of

::
the

::::::::
strategy:

:::
to

::::
what

:::::::
actions

:
it
::::::

applies
::::::::::

(detection,
:::::::::
mitigation,

::::::::::
restoration),

:::::::
whether

::
it

:
is
::::::
generic

::
( )

:::
or

::::::
specific

::
( )

:::
to

:
a
::::::
family

::
of

::::::::::
ransomware,

::::
and

:::::::
whether

::
it
::
is
::
a
::::::
drop-in

::::::
solution

::::
(i.e.,

::::
that

::::
only

:::::::
requires

:::
the

::::
user

::
to

:::::
install

:::::
some

:::::::
software,

::
as
::
it
:::::::
happens

::::
e.g.,

:::
for

:::::::::
antiviruses).

nises a running ransomware, it activates a function of the file269

system that copies the data significant to the user to a loca-270

tion not reachable by the ransomware, for later restoration.271

Also Ranflood, through its copy-based strategies (On-272

The-Fly and Shadow, cf. Section 4), provides a kind of re-273

covery feature: if some original file is
:::
the

:::::::
original

::::
files

:::
are274

lost to the attack, the user has some chance to find its content275

in one of
::::::
retrieve

::::
their

::::::
content

::
in

:
the copies. One can refine276

this technique, e.g., by using the Shadow archive (if any)277

to restore files lost after the attack and by unifying repli-278

cas and offering post-attack file-recovery support (see Sec-279

tion 3.2.4).280

While both ShieldFS and Ranflood are reactive recov-281

ery systems—that enact a response to an attack—the main282

difference with ShieldFS is that the latter is not a drop-in so-283

lution, since it entails switching to the namesake file system. 284

Ranflood’s copy-based techniques require some preliminary 285

configuration, but we deem this closer to configuring some 286

software rather than formatting a whole drive 287

::::
This

:::::
comes

:::::
with

::::::
several

::::::::::::
disadvantages.

:::::
First,

::::
the

::::
user 288

:::::
needs

::
to

::::::::
recompile

:::
the

::::::::
operating

::::::
system

::::::
kernel

::
to

::::::::
correctly 289

::::::::
configure

::
the

::::::::
ShieldFS

:::::::
solution.

:::::::
Second,

:::::
being

:::::::::::::::::::
file-system-dependent,290

::
the

:::::::
solution

::
is

::::::
specific

::
to

:::
the

::::::::
supported

:::::::
formats.

::::::
Third,

:::::::::
continuous291

::::::
porting

:::::::
between

:::::::
different

:::::::
versions

::
of

:::
the

::::
same

:::::
kernel

::
is

::::::::
necessary292

::
to

::::
adapt

::::::::
ShieldFS

::
to

:::
the

:::::
latest

:::::::
version. 293

::::::::
Contrarily

::
to

::::::::
ShieldFS,

:::
the

:::::::
solution

::
we

:::::::
propose

::
is

:::::::::::
generic—this294

:
is
:::::::::

witnessed
::::
also

:::
by

:::
the

:::::::::::::
implementation

:::
of

::::::::
Ranflood

::::
(cf. 295

::::::::
Section 4

:
),

:::::
which

::::
uses

::
the

::::
Java

::::::
Virtual

::::::::
Machine

::
for

:::::::::
portability 296

::
on

:::
any

::::::
system

:::
that

::::::::
supports

::::::
it—and

:::::::
requires

:::
only

:::::
some

::::::::::
preliminary297

::::::::::::::::::
configuration—similar

::
to

::::::::::
mainstream

::::::
drop-in

:::::::
software

:::::::::::
applications,298
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:::
like

:::::::::
antiviruses.299

3. Data Flooding against Ransomware300

Before presenting relevant details of Ranflood, we intro-301

duce the family of techniques, called Data Flooding against302

Ransomware (DFaR), where Ranflood comes from—hinged303

on the dynamic honeypot approach. We start by positioning304

DFaR against the existing work on honeypots used to con-305

trast ransomware. Then, we discuss how DFaR represents306

a family of techniques which includes applications to three307

main areas of vulnerability management: detection, mitiga-308

tion, and restoration.309

3.1. Dynamic honeypots
::::::::::
Honeypots

:
and Data310

Flooding against Ransomware311

The essence of honeypots relies on the renowned scheme312

where administrators deploy easy-to-access computer resour-313

ces that emulate the real ones present within the same net-314

work. These dummy resources must look as indistinguish-315

able from to the actual ones as possible to an external in-316

truder. Administrators isolate these resources from the real317

system to detect and slow down intrusions, setting up moni-318

tors to notify any suspicious activity (which is illicit by defi-319

nition, since there is no reason for legitimate users to access320

the honeypot).321

Previous works analysed the use of honeypots to detect322

ransomware (Moore, 2016; Al-rimy et al., 2018; Kok et al.,323

2019). The simplest declination of this approach lies on
::
in324

deploying one or more honeypot nodes that contain data pro-325

files similar to the ones attacked by ransomware. Then, mon-326

itors on the honeypot nodes can detect any changes to these327

static, isolated files and warn the administrators of the pres-328

ence of the malware in the network.329

More advanced techniques rely on using honeypots di-330

rectly on the real nodes. The core of these solutions is to cre-331

ate honeypot folders and monitor them for changes. While332

the idea seems promising—essentially, making any node of333

the network a possible honeypot monitor for ransomware—334

the analysis performed by Moore (2016) on the existing tech-335

niques revealed a strong limitation to the approach. The336

problem, here, is that these solutions rely on static files al-337

ways present on the disk of the user. Since the honeypot files338

can mix with the actual ones of the user, a solution that im-339

plements this technique must balance between its available340

trapping surface and the encumbrance it causes to the users.341

Simply put, if the detection software created some honeypot342

files in locations frequently browsed by the user (usually, the343

ones mainly attacked by ransomware (Rossow et al., 2012; Y. Connolly and Wall, 2019; Continella et al., 2016)344

), e. g., the “Desktop” and “Documents” folders , the user345

could have interfering reactions upon discovering these “synthetic”346

files. For example, they could be alarmed and report false347

attacks to the administrators, or they could delete the synthetic348

data, trip the software’s detector, and make it report false349

positives. Hence
::
In

:::::::
essence,

::
if

:::
one

:::::::
wanted

::
to

::::
have

::::::::
complete350

:::::::::
monitoring

::
of

:
a
::::::
whole

::::::::
machine,

::::
there

::::::
should

::
be

::
at

::::
least

::::
one351

:::::::
honeypot

::::
file

::
in

::::
each

::
of
:::

its
:::::::
folders.

::::::::
However,

::::
this

:::::::
quickly352

:::::::
becomes

:::::::::::
inconvenient

::::
when

::::::
mixing

::::::::
honeypot

::::
files

::::
with

:::::
users’ 353

::::
data.

:::::::
Indeed,

::::
users

::::::
create,

::::::
move,

:::
and

:::::
delete

::::::
folders

::
in
:::::
their 354

:::::::
ordinary

::::
work

:::::::
routines

::::
and

::::
they

:::::
could

:::
trip

:::
the

:::::
alarm

:::
of

:::
the 355

:::::::
detector.

::::
One

:::::
could

::::
think

::
of

::::::::
excluding

:::::
these

:::::::::
frequently

::::
used 356

::::::
folders,

:::
but

:
it
::::::
would

::
be

:
a
::::::
strong

::::::::
limitation

::
of

:::
the

:::::
range

::
of

:::
the 357

::::::
detector, these

::::
since

::::
most

::::::::::
ransomware

::::::
attacks

:::::
those

:::::::
locations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rossow et al., 2012; Y. Connolly and Wall, 2019; Continella et al., 2016)358

:::::
which

::::
hold

:::::::
content

:::::::
sensitive

::
to
:::

the
:::::

user.
:::::::
Hence,

::::::::
honeypot 359

solutions resort to using seldom-browsed (and attacked) lo- 360

cations and folders, thus limiting their trapping surface and 361

strongly restraining their detecting ability: in the words of 362

Moore (2016) “there is no way to influence the malware to 363

access the area containing the monitored files”. 364

The idea behind Data Flooding against Ransoware devel- 365

ops this take on ubiquitous honeypots against ransomware 366

and gives it a Muhammad-and-the-Montain kind of twist: 367

if the ransomware will not come to the trap,
then the trap must go to the ransomware 368

Instead of using static files and incurring in the related 369

trap-surface limitations, our intuition is to adopt a dynamic 370

approach, where detection works by monitoring the activity 371

of processes and by generating “floods” of honeypot files. If 372

the process under inspection modifies the honeypot files— 373

refined instantiations can analyse the patterns of data trans- 374

formation to minimise false positives—we have strong evi- 375

dence that it is some malware trying to lock the files of the 376

user. 377

Working on the above idea, we found that one can use 378

data flooding not only to detect ransomware, but also to con- 379

trast their action by mitigating their attacks and recovering 380

from these. 381

The essence of the approach behind Data Flooding against 382

Ransomware (DFaR) is to generate a deluge of honeypot files 383

on demand in sensible locations, such as where the ransom- 384

ware is executing or user folders, to detect and contrast the at- 385

tacks. DFaR detection overcomes the limitations of existing 386

honeypot solutions by adopting a dynamic stance towards 387

decoy file deployment and their monitoring. DFaR mitiga- 388

tion (i.e., the contrast of an ongoing attack) has two benefits. 389

On the one hand, it generates resource contention (Hunger 390

et al., 2015) with the ransomware: its I/O operations com- 391

pete on accessing the disk against the many ones induced by 392

the flooder, slowing down the action of the former; on the 393

other hand, data flooding performs a moving target defence 394

action (Evans et al., 2011): the legit files of the users mix 395

with the many decoy ones generated by the flooder, leading 396

the ransomware to spend time (and I/O access) harmlessly 397

working on honeypot files rather than on the sensitive ones. 398

Recovery in DFaR can happen when mitigation used flood- 399

ing techniques that generate files as copies of existing files 400

of the user. Here, the idea is that, even if the ransomware 401

encrypts the original copies of the user, we can recover the 402

missing files using their pristine copies (if any). 403

3.2. Phases of Data Flooding against Ransomware 404

Before delving into the details of Ranflood—which im- 405

plements an instance of the mitigation phase of DFaR—we 406
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Figure 1: Flowchart of the relationship among the detection,
mitigation, and restoration phases of Data Flooding against
Ransomware.

focus on the main three phases that characterise vulnerabil-407

ity management through data flooding against ransomware:408

detection, mitigation, and restoration.409

3.2.1. Three Phases of Data Flooding Against410

Ransomware411

We report in Figure 1 a depiction of the relationship among412

the detection, mitigation, and restoration phases of Data Flood-413

ing against Ransomware. In the figure, we start (the top-most414

element) from asking
:::
with

::
a
:::::
choice

::::::
which

::::
asks whether we415

want to follow the automatic or manual triggering of the mit-416

igation phase. In the first case, we use the detection mechanism417

of DFaRto trigger the launch of the Mitigation phase1. As418

mentioned
:::
As

:::::::
depicted

::
in

:::::::
Figure 1,

:::
the

::::::
Manual

::::
and

::::::::
Automatic419

::::::::
activation

:::::::::
modalities

:::
are

:::::::
mutually

:::::::::
exclusive.

:::
The

:::::::::
automatic420

::::::::
activation

::::::
implies

::::
the

:::::
usage

::
of

::
a
:::::::
detector

::::::::::
component

::::
that421

:
is
::::

able
:::

to
:::::::
identify

:::
the

::::::::
presence

::
of

:::
an

:::::::
ongoing

::::::
attack

::::
and422

::::::
triggers

:::
the

:::::::::
mitigation

:::::
phase.

:
423

:::
The

::::::::
detection

::::::::
behaviour

::::::::::
represented

:
in
::::::::
Figure 1

:
is
:::::::
specific424

::
of

:::::
DFaR.

::::
This

::
is

::::::
evident

::::
both

::::::
reading

:::
the

:::::::
callouts

:::
that

::::::
explain425

::
the

:::::::::
behaviour

::
of

:::
the

::::::::
elements

::::
and

:::
the

::::::::::
relationship

::::
that

:::
the426

1Of course, one can combine other detection techniques to trigger the
mitigation phase, such as the one reviewed in Section 2.

:::::::
detection

::::
has

::::
with

:::
the

::::::::::
restoration.

:::::::::
However,

::
in

:::::::::
principle, 427

:::
one

:::
can

:::
use

:::::
other,

::::::::::::::
non-DFaR-based

:::::::
detection

:::::::::
techniques

:::::
(e.g., 428

::::
some

::
of

:::::
those

:::::::
reviewed

::
in

::::::::
Section 2

:
)
::
to

:::::
trigger

:::
the

:::::::::
mitigation 429

:::::
phase.

:::
In

:::::
those

:::::
cases, the detection

:::::
would

:::
not

::::::::::
necessarily 430

::::::
interact

::::
with

:::
the

::::::::::
restoration. 431

:::::::
Looking

::
at

:::::::
Figure 1,

::::::::::
DFaR-based

::::::::
detection works by gen- 432

erating decoy files given a target location. Ideally, the detec- 433

tor would consider a time-window within which it expects 434

the decoy files to be encrypted. If this happens, the detector 435

trips an alarm (and possibly triggers the mitigation phase), 436

otherwise the detector enters the restoration phase, which 437

restores the original state of the target location as before the 438

triggering of the detection, i.e., it safely removes the gen- 439

erated decoy files. When the mitigation phase starts, either 440

triggered manually or by an automatic detector, it floods one 441

or more target folders (e.g., where the ransomware is attack- 442

ing, but also critical locations, independently of where the 443

attack is running, such as personal folders of the user). This 444

happens until the emission of a signal to stop the flooding 445

(represented by the “Continue Flooding?” decision in Fig- 446

ure 1). After the mitigation phase, one can decide to run a 447

restoration routine that removes the flooding files. Depend- 448

ing on the flooding technique employed, this phase can also 449

restore the files of the user that might have been encrypted 450

by ransomware. 451

We dedicate the remainder of this section to provide
:::::::
providing452

further details on how we envision the implementation of 453

these three phases. 454

3.2.2. Detection 455

Regarding the practice of detection, we distinguish two 456

modalities for the implementation of the detection phase, 457

which hinges on how one defines the target location of the 458

detection—i.e., where the detector deploys its decoy files. 459

The static modality is a mix between the traditional way 460

of using honeypot files for ransomware and the novel dy- 461

namic take we present in this paper
:::::
article. In this case, the 462

user defines a set of target locations that the detector period- 463

ically floods to spot possible ongoing attacks. This happens 464

by having the detector perform what we call “mini-floods”: 465

it generates sets of random files in the target location(s) and 466

monitors any activities on those files. If a program modi- 467

fies said generated files in a way compatible with a ransom- 468

ware (e.g., by replacing them with encrypted copies), then 469

we have strong evidence that the suspect is indeed ransom- 470

ware, against which we can launch the mitigation phase (e.g., 471

Ranflood). 472

This modality partially overcomes the limitations of the 473

traditional way of using honeypot files to detect ransomware. 474

Indeed, as mentioned in Section 3.1, classic honeypot tech- 475

niques for ransomware detection have the limitation of tar- 476

geting seldom-used folders to minimise interactions with the 477

user (that can result in false positives). On the contrary, the 478

dynamic loop of flood-based detection (deploy files, moni- 479

tor within a time-window, restore) makes it easier to monitor 480

more trafficked, and more likely to be attacked,
::::::::::::::::
likely-to-be-attacked481

locations (such as the Desktop folder of the user). 482
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~
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scenario with RanFlood
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Figure 2: Depictions of the action of a crypto-ransomware (top) and the interaction
between a DFaR-based mitigation tool (viz. Ranflood) and a crypto-ransomware (bottom).

The other
:::::::::
Alternative

::
to

:::
the

:::::
static modality is the dy-483

namic one
:::::::
modality. In this case, we envision a complemen-484

tary process that “patrols” the system and triggers the detec-485

tor on a specific set of locations. An example of one such486

patroller is a process that monitors the activities of the other487

running processes to spot behaviours that align with the ex-488

ecution profile of ransomware. In this case, the flood-based489

detector complements the activity of the patroller by dissi-490

pating the uncertainty of its detection logic, testing the hy-491

pothesis that the suspicious process is ransomware.492

Of course, the design space of the patrolling process is493

quite wide, since it does not necessarily need to follow the494

flooding approach — we
:::::::::::
approach—we

:
actually advise against495

using it as a patrolling routine, to avoid incurring in the limi-496

tations reported by Moore (2016) and discussed for the static497

modality — but
::::::::::::
modality—but

:
can rather use complemen-498

tary technologies such as process and file monitoring (Mehnaz499

et al., 2018) and machine learning (Gharib and Ghorbani,500

2017).501

The dynamic modality is the one we consider the most502

advanced and refined, which minimises the problems of clas-503

sical honeypot techniques for detecting ransomware.504

3.2.3. Mitigation505

The mitigation phase represents a reaction to an ongoing506

ransomware attack, which a DFaR-based tool counteracts by507

flooding target folders—such as where the ransomware is508

performing its attack but also, as a preventative measure, lo-509

cations with files critical to the user—with decoy files. As510

mentioned, the
:::
The

:
principle is to stall the attack by con- 511

founding the authentic files of the user with a multitude of 512

decoy ones, which the malware would waste time on en- 513

crypting. 514

Since Ranflood builds on the principles of DFaR miti- 515

gation, we use the description of this phase to introduce the 516

general behaviour of Ranflood and dedicate Section 4.1 and 517

Section 4.2 to respectively detail the three flooding strate- 518

gies we implemented in Ranflood and the salient points of 519

its software architecture. 520

To aid our presentation, we depict in Figure 2 a scheme 521

of the action of some representative ransomware (top) and its 522

interaction with a DFaR-based mitigation tool (bottom)—in 523

the picture, we represent this tool with the Ranflood logo . 524

In the top part of the Figure, at time 𝑡0 (the left-most 525

block on the line), the ransomware starts its attack on a target 526

folder by encrypting the files therein (the green documents 527

represent the authentic files of the user). At time 𝑡1, the ran- 528

somware has encrypted some files (viz., the red icons with 529

a lock badge) and continues its action on the next ones. At 530

time 𝑡𝑛, the ransomware has terminated the attack, and en- 531

crypted all files. 532

At the bottom of Figure 2, we show how a DFaR-based 533

tool—specifically, Ranflood—contrasts the action above. In 534

the Figure, the tool appears only after some detection mech- 535

anism activated it (as discussed in Section 3.2.2), at 𝑡1. 536

The detection phase can instruct the tool to act on a spe- 537

cific set of folders, where the ransomware is performing its 538

attack. However, this mitigation technique can also work 539
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under the weaker assumption that the detector found an on-540

going attack, without indicating where this is happening,541

but the user specified sensitive folders to defend against the542

ransomware (e.g., the “Home” folder, “Documents”, etc.),543

which the tool floods with files. We respectively call these544

activity—
::::::
activity- and location-based activation modalities,545

and we deem both of them valid.546

Of course, the activity-based modality is the most fo-547

cussed of the two, as it contrasts the action of the ransom-548

ware in the location where it is deploying its attack. When549

one cannot rely on a detector able to spot where the ransom-550

ware is acting, the location-based mode provides a way to551

(preemptively) ward sensitive folders. Concretely, we also552

use the location-based modality in Section 5 to simplify the553

evaluation process of Ranflood, since it is not affected by554

the possible flakiness of activity-based flooding—which can555

change the target location of the countermeasure over differ-556

ent runs.557

In general, one can even decide to deploy both activity-558

and location-based countermeasures to increase the effec-559

tiveness of the mitigation. The conjecture, here, is that the560

mix would simultaneously contrast the attack of the ransom-561

ware where it is causing damage, and flood
:::::::
flooding the crit-562

ical folders to the user in advance. Since this is an advanced563

composition of the mentioned
::::
those

:
modalities, we leave the564

empirical study of the effectiveness of their combination as565

future work.566

Back to Figure 2, upon activation, the mitigation tool567

generates honeypot files (the documents marked with the568

“R” badge). The assumption we make is that, by generating569

a number of copies significantly greater than the number of570

legit files, the ransomware will more likely spend time on the571

former than on the latter. The ongoing action at 𝑡𝑛 represents572

the mitigation effect of the tool, which hinders the attack of573

the ransomware and buys time for the users/administrators574

to intervene.575

3.2.4. Restoration576

After understanding how the detection and mitigation577

phases of DFaR work, one might wonder:578

“Once we stopped the flooding of files, how do we
restore the system as close as possible to the original

state?”
579

A possible answer to this question is what we dub the580

outflow, i.e., a restoration procedure tailored for DFaR-based581

detectors and mitigation tools. The principle backing this582

phase is the ability to discriminate between authentic and583

decoy files, to safely and effectively remove the latter.584

When we consider flooding with decoy files filled with585

random content, restoration is a simple mark-and-sweep kind586

of task. However, this becomes an additional design dimen-587

sion when paired with copy-based flooding modalities—where588

the decoy files are copies of the original files of the user;589

examples of these modalities are the On-The-Fly and the590

Shadow flooding modalities of Ranflood (presented in Sec-591

tion 4.1).592

Indeed, in cases where we performed the flooding with 593

copies of the original files, it can happen that the decoy files 594

are the only valid copies of the original ones, of which we 595

want to preserve one and use it in place of the lost original. In 596

this case, one can define an outflow routine able to recognise 597

when the authentic files of the user have been compromised 598

and, if pristine copies of these are available as decoy files, 599

use these to restore the former. 600

As expected, the implementation of the file-discrimination 601

logic behind the outflow phase has a many alternatives. A 602

naïve solution can rely on storing (preferably in a remote, 603

safe location) the list of generated files, which we can later 604

provide to the outflow. This is the logic implemented by the 605

DFaR restoration tool (called “Filechecker”) we employ in 606

our experiments in Section 5 to measure the effectiveness of 607

Ranflood. 608

More advanced techniques can rely on digital fingerprint- 609

ing (Stinson and Paterson, 2018, Chapter 13) to mark the 610

flooding files in a way that prevents ransomware from per- 611

forming quick analyses to detect a common signature and 612

exclude them from its action. The idea, here, is to avoid 613

saving any information on the fingerprinting process (e.g., 614

the position of the fingerprints in the files) but rather rely 615

on expensive fingerprint-inference procedures that statisti- 616

cally analyse the files and reconstruct the list of the gener- 617

ated ones1..1 Besides working as a watermarking procedure, 618

we can use fingerprinting to hide some additional flooding 619

information in the generated files. For example, for the file- 620

copying flooding modalities, one can include in the gener- 621

ated files the path of the original copy, to help automatising 622

the comparison-and-replacement process on the encrypted 623

sources. 624

As a closing note on Data Flooding against Ransom- 625

ware techniques, we highlight that these do not have partic- 626

ularly demanding prerequisites or dependencies (as opposed 627

to some techniques reviewed in Section 2, e.g., which require 628

the user to format the disk using a dedicated file system), and 629

they work with the traditional file-access APIs provided by 630

common operating systems. This positive trait makes DFaR- 631

based tools (such as Ranflood) drop-in solutions, akin to the 632

regular antiviruses users and administrators install on home 633

and work computers. 634

4. Ranflood 635

We now focus our presentation on the relevant imple- 636

mentation details of Ranflood. Namely, we present the three 637

::::
novel

:
flooding strategies that Ranflood provides and its soft- 638

ware architecture. 639

1To harden the task for the ransomware, one can use sets of fingerprints,
which forces the ransomware to either spend time on piecemeal inference
computations or give up.

1
:
To

:::::
harden

::
the

:::
task

::
for

::
the

:::::::::
ransomware,

::
one

:::
can

::
use

:::
sets

::
of

::::::::
fingerprints,

::::
which

::::
forces

:::
the

::::::::
ransomware

::
to

::::
either

::::
spend

:::
time

::
on

:::::::
piecemeal

:::::::
inference

:::::::::
computations

:
or
:::
give

:::
up.
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4.1. Three Data Flooding Strategies640

To streamline the presentation of the three flooding strate-641

gies we designed and implemented in Ranflood, we delineate642

these via simplified pseudo-code, useful to pinpoint their643

qualitative differences, pros, and cons. We provide more de-644

tails on their actual, more sophisticated implementation in645

Section 4.2.646

4.1.1. Random647

Nomen omen, the Random flooding strategy, sketched in648

Algorithm 1, floods a given location (𝑝𝑎𝑡ℎ, in the pseudo-649

code) with randomly-generated files. It incarnates the ba-650

sic form of flood-based mitigation: slowing down the ran-651

somware via resource contention and moving-target defence.652

The strategy has the smallest friction to its deployment among653

the three we are presenting, as it does not entail pre-flooding654

configurations by the user (as discussed for the On-The-Fly655

and the Shadow strategies, below).656

Algorithm 1: Random Data Flooding
input: path, minSize, maxSize
FILE_EXT ← [“.doc”,“.pdf”,“.xls”,“.jpg”,“.mp4”,..];
while keepFlooding do

f_size ← randomInt(minSize,maxSize);
cnt ← newByteArray( f_size);
ext ← rndSelect( FILE_EXT);
append( cnt, getHeader( ext));
seed ← random64Seed() ; // 64-bit number

for i ← 0 to i < ( capacity( cnt) / 64 ) do
seed ← seed ^ ( seed ≪ 13 );
seed ← seed ^ ( seed ⋙ 7 );
seed ← seed ^ ( seed ≪ 17 );
append( cnt, seed);

end
if capacity ( cnt ) > 0 then

r ← newByteArray( capacity( cnt));
r ← fillWithRandomBytes( r);
append ( cnt, r );

end
writeFile( rndFilePath(path, ext), cnt);

end

We expect an
::
the

:
implementation of the strategy to be657

effective if it meets three conditions: (1) it generates files us-658

ing extensions that ransomware usually target (Rossow et al.,659

2012; Y. Connolly and Wall, 2019; Continella et al., 2016)660

(e.g., in Algorithm 1, and in Ranflood, we use common for-661

mats such as “.pdf” and “.jpg”); (2) the generated content662

of the files does not give way to analyses that let the mal-663

ware suspect of their synthetic nature (e.g., reusing the same664

sequences over and over or having file headers that do not665

match the standard format of their related extension); (3) it666

produces large amount
:::::::
amounts

:
of such files in a short time-667

frame.668

The code in Algorithm 1 achieves (1), (2), and (3) to a669

satisfying degree. In particular, we deem (2) and (3) of good670

level for two reasons. One, because we use a variant of Xor- 671

shift (Marsaglia, 2003) for fast randomness (the first for loop 672

in Algorithm 1) to quickly generate random content for files 673

of random sizes—in the [𝑚𝑖𝑛𝑆𝑖𝑧𝑒,𝑚𝑎𝑥𝑆𝑖𝑧𝑒] interval, e.g., 674

Ranflood uses common file sizes in the range 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 28 675

and 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 222 as default values, but the user can also 676

configure these. Moreover, we make the format of the file 677

(declared by its extension) and its header match—the first 678

instruction that appends to the 𝑐𝑛𝑡 array the byte sequence 679

related to its 𝑒𝑥𝑡ension (getHeader). The rndFilePath func- 680

tion generates a random file path (location, file name) under 681

the given 𝑝𝑎𝑡ℎ and with the given 𝑒𝑥𝑡ension. 682

4.1.2. On-The-Fly 683

The On-The-Fly flooding strategy is the first we present 684

that performs a copy-based flooding. Essentially, we replace 685

the generation of synthetic files performed by the Random 686

strategy with the generation of copies of actual files found at 687

a flooding location. File replication adds a layer of defence 688

to the Random strategy, as it helps to increase the likelihood 689

of preserving the users’ files by generating additional, valid 690

copies that might escape the ransomware. 691

Not all files have equal importance for this strategy. The 692

basic rule we introduce, here, is skipping the replication of 693

encrypted files, since they worsen the performance of the 694

strategy; copying these files is detrimental in two ways: a) it 695

wastes the time of the flooder on files useless to the user and 696

b) it generates files that the malware would skip, recognising 697

them as already encrypted. 698

The solution we develop to tackle this issue is to add 699

a preliminary “snapshotting
:::::::::::
snapshooting phase” to save a 700

list of the valid files, later used during flooding for efficient 701

discrimination. Saving such a list trades a small occupation 702

footprint on the disk with an increase in the efficacy of the 703

flooding. 704

Specifically, the snapshotting
:::::::::::
snapshooting procedure re- 705

ported in Algorithm 2 saves a digest (e.g., MD5) of the con- 706

tent of the user files and uses it as an integrity verification 707

code to validate the files during the flooding phase (Algo- 708

rithm 3). 709

For simplicity, in Algorithm 3, at each iteration we read 710

(readBytes) the files from disk and write (copy) them, if valid. 711

While this could be a reasonable implementation, it leaves 712

open the possibility to lose files between iterations2..2 To 713

avert this risk, Ranflood runs a more sophisticated version 714

of Algorithm 3, not shown here for the sake of clarity, that 715

caches the content of the files read once from the disk and 716

then iterates their replication (trading memory occupation 717

for effectiveness). 718

We close the description of On-The-Fly noting a subtle 719

detail: saving snapshot lists exposes the strategy to failure 720

due to the action of the ransomware, which could encrypt 721

2Imagine, in the first iteration, that we replicate the valid file 𝑓 in
𝑓 ′ , the ransomware encrypts both of them, and we lose (the possibility
of copying) the content of 𝑓 .

2
:::::
Imagine,

::
in
:::

the
:::
first

::::::
iteration,

:::
that

:::
we

::::::
replicate

:::
the

::::
valid

::
file

::::
𝑓 in

::
𝑓 ′ ,

:::
the

::::::::
ransomware

::::::
encrypts

::::
both

::
of

::::
them,

:::
and

::
we

:::
lose

:::
(the

::::::::
possibility

:
of
::::::
copying)

:::
the

:::::
content

::
of

::
𝑓 .
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the list itself. This is a general problem of any software that722

uses secondary memory for its functionality (e.g., for config-723

uration, runtime, etc.) and one can mitigate it a) via remote724

file storage, like NAS and the Cloud, and b) using locations725

and (random, exotic) file extensions for lists, which ransom-726

ware usually skip. We omit to discuss this problem here and727

plan to address the subject in future extensions.728

Algorithm 2: On-the-fly Snapshotting
:::::::::::
Snapshooting.

input: path
for file in walkFiles ( path ) do

if isFile( f ) then
saveOTFSnapshot( path, f,

digest( readBytes( path, f )));
end

end

Algorithm 3: On-the-fly Data Flooding
input: path
while keepFlooding do

for f in walkFiles ( path ) do
b ← readBytes( path, f );
if getOTFSnaphot(path, f ) = digest( b) then
copy( b, randomFilePath(path));

end
end

end

4.1.3. Shadow729

The Shadow strategy is a variant of the On-The-Fly one730

(indeed, Algorithms 4 and 5 of Shadow are close to, respec-731

tively, Algorithms 2 and 3 of On-The-Fly), where snapshots732

save the full content of the files of the user rather than more733

lightweight information, such as their fingerprint.734

Since the Shadow snapshotting
::::::::::
snapshooting

:
phase fol-735

lows the traditional process of backup systems, it also suf-736

fers the same, known trade-offs of local, on-site, and re-737

mote backup storage/retrieval. In Ranflood, we use (tar.gz)738

archives to try to minimise the space required for snapshots739

and preserve those archives on the same disk of the original740

copies, both for simplicity and to minimise loading times.741

More advanced implementations could use secondary disks,742

NAS, and the Cloud to mitigate the possibility of losing the743

local backups, if targeted by the ransomware.744

Algorithm 4: Shadow Snapshooting.
input: path
for file in walkFiles ( path ) do

if isFile( f ) then
saveShadowSnapshot( path, readBytes( f ));

end
end

Algorithm 5: Shadow Data Flooding
input: path
while keepFlooding do

for cnt in getShadowSnapshots ( path ) do
writeFile( rndFilePath(path), cnt);

end
end

4.2. Software Architecture 745

As mentioned, the
:::
The

:
implementation of the strategies 746

from Section 4.1 in Ranflood are more sophisticated, tech- 747

nically complex, and tuned to exploit the maximal degree 748

of concurrency available on the attacked node—maximising 749

both IO access contention and the file generation rate. Here- 750

inafter, we report on the salient elements of the software ar- 751

chitecture of Ranflood that support
:::::::
supports this high degree 752

of concurrency. 753

The Ranflood Architecture— Two components deter- 754

mine the behaviour of Ranflood. 755

First, the Ranflood engine implements refined versions 756

of the algorithms shown in Section 4.1. We call these ele- 757

ments operations, e.g., one operation can be an instance of 758

the Random flooding strategy or the snapshotting
::::::::::
snapshooting 759

routine of the On-The-Fly strategy. While in Section 4.1 we 760

represent strategies as indivisible units, in Ranflood one op- 761

eration corresponds to a number of
:::::
several

:
executable tasks 762

without a priori bounds, e.g., once we execute a Random 763

flood operation, it generates an unlimited amount of tasks 764

(until the user commands the termination of that operation) 765

and each task carries the code for the generation of one, spe- 766

cific random file. Since we envision the Ranflood engine to 767

manage multiple concurrent commands, possibly launched 768

from different sources (e.g., the user, an automatic detec- 769

tor, etc.), we opted for a Client-Daemon model (Tanenbaum, 770

2009, Chapter 2). Specifically, the engine works as a dae- 771

mon process in the background, not associated with a partic- 772

ular user, and users/programs interact with it with lightweight, 773

asynchronous clients/interfaces. 774

The second component is the task manager, which han- 775

dles the scheduling of operations and their tasks. Indeed, 776

at runtime, we equate launched operations and their tasks 777

as generic work that the task manager schedules for exe- 778

cution. The difference between an operation and a task is 779

that the former generates other tasks, while the latter per- 780

forms I/O interactions. Concretely, we implemented the task 781

manager following the Proactor (Pyarali et al., 1997) event- 782

handling pattern. The Proactor decouples the task demulti- 783

plexing and the task-handler scheduling logic from the actual 784

behaviour enacted by the single tasks, in an asynchronous 785

way
:::::::::::::
asynchronously. This execution method helps in further 786

exploiting the parallelism available on the attacked node and 787

in minimising the effect of I/O overhead and latency. More- 788

over, isolating tasks makes operations more resilient: if a 789

task fails, it does not affect its operation or the other tasks. 790

Currently, Ranflood (
:::
We

::::::
further

::::::
clarify

:::
the

::::::::::
architecture 791
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Figure 3:
:::::
Model

::
of

:::::::::
Ranflood’s

::::::::::
Architecture.

::
of

::::::::
Ranflood

::
by

::::::::
depicting

::
a
::::::
model

::
of

::
it

::
in

:::::::
Figure 3

:
.
:::
In

:::
the792

::::::
Figure,

::
we

::::::::
highlight

:::
the

::::::::::
(interprocess

::::::::::::::
communication)

:::::::::
interaction793

:::::::
between

::
the

::::::
Client

::::::::::::
Command-line

:::::::
Interface

:
(
:::::
Client

::::
CLI)

::::
and794

::
the

::::::::
Daemon.

:::::::
Besides

::::::
issuing

:::::::::
commands

:::
for

:::::::::
contrasting

::::::::::
ransomware,795

::
the

::::::
Client

:::
can

::::
also

::
set

::::::::::::
configurations

::
of
:::
the

::::::::
Daemon,

::::::
which796

::
the

:::::
latter

:::::
stores

::
in

:
a
:::::::
settings

:::
file.

::::
The

::::
other

:::::
main

::::::::::
components797

::
are

::::::::
dedicated

::
to

::::::::::::
implementing

:::
the

:::::::
different

:::::::
flooding

::::::::
strategies.798

:::
The

:::::
basic

:::::::
interface

::
for

:::
the

:::::
latter

:
is
:::::::
Flooder

:
,
:::::
which

:::
the

:::::::
Random,799

:::::::::
On-the-Fly

:
,
:::
and

:::::::
Shadow

::::::
flooders

::::::::::
implement.

:::
The

::::::::::
On-the-Fly800

:::
and

:::::::
Shadow

::::::::
strategies

:::
also

::::
have

:
a
:::::::::::
snapshooting

::::::
phase,

:::::
which801

:::
they

::::::
realise

::
by

::::::::::::
implementing

::
the

:::::::::::
Snapshooter

::::::::
interface.

::::
The802

:::::::
Daemon

:::::::
interacts

::::
with

:::::
these

::::::::::
components

:
to
::::::
obtain

::::
tasks

::::
that803

::::::
operate

::
on

::::
files,

:::
ran

::
in

:::::::
parallel

::
by

:::
the

::::
Task

::::::::
Manager

:::::::
—which804

:::::::::
implements

:::
the

:::::::::
Proactor’s

::::
logic.

::::
The

:::::
faded

:::::::
Detector

:::::::
interface805

:::::::
indicates

::::
that

:::
the

:::::::
Ranflood

::::::::
Daemon

::
is

::::::::
organised

::
to

:::::::
support806

::
the

::::::::::
integration

::
of

:::::::
(generic,

::::
i.e.,

::
no

::::::::::
necessarily

:::::::::::
DFaR-based)807

::::::::
detectors.808

:::::::
Ranflood

::
(both its client and daemon) , at

::
(at

:::
the

:::::
time809

::
of

::::::
writing

::
at version 0.5.9-beta, )

:
is an open-source project3810

written in Java, uses the RxJava4 library for the basic compo-811

nents of its task manager and, through the GraalVM5 com-812

piler, it is available as native binaries for Windows, macOS,813

and Linux systems, besides its Java executable.814

5. Evaluation815

We now present our evaluation on
::
of the effectiveness816

of Ranflood in lowering the loss rate of files due to ran-817

somware attacks. To perform a thorough evaluation, we test818

Ranflood under different conditions: we select 6 ransomware819

3We will make the link to the repository available in case of acceptance
of the article.

4https://github.com/ReactiveX/RxJava.
5https://www.graalvm.org/.

samples, we consider 4 increasing activation delays of Ran- 820

flood (which simulate in a deterministic way the triggering 821

by a detector), and test each of its 3 flooding strategies. This 822

results in 823

:::
The

:
4
:::::::::
increasing

::::::::
activation

::::::
delays

::
are

::::::::
important

::
to
:::::::::
investigate824

::
the

:::::::::::
relationship

:::::::
between

:::
the

:::::
time

::
it

:::
can

::::
take

::::::::
detection

:::
to 825

::::::
activate

::::::::
Ranflood

::::
(i.e.,

:::
to

:::::::
account

:::
for

:::::::
different

::::::::::
timeframes 826

::
for

:::
the

:::::::::
automatic

::::::::
triggering

::
of
::::

the
:::::::::
mitigation,

::
cf.

::::::::
Figure 1

:
) 827

:::
and

:::
the

:::::::::::
effectiveness

::
of

:::
the

::::::::
Ranflood

::::::
action.

::
In

::::
this

::::::
article, 828

::
we

:::::::
ditched

:::
the

:::
use

::
of

:::::
some

::::::
specific

::::::::
detection

::::::::::
technology

::
to 829

::::
avoid

::::::::::
introducting

:::::::::
additional

:::::::
variables

::::
into

:::
our

::::::::::::::
experiments—the830

::::
most

::::::::
prominent

::
of

:::::
these

:::::
being

::
the

::::::::
variance

:
in
::::::::
detection

:::::
times. 831

::::::
Hence,

:::
we

::::
take

::
4

::::
fixed

::::::
delays

::::::
which

::::::::
represent

:::::::::
increasing 832

::::::::
worst-case

:::::::::
activation

::::::::
scenarios

:::
(we

:::::::
discuss

:::
the

:::::
actual

:::::
times 833

::
in

:::::::::
Section 5.1,

::::::
which

::
are

:::::::
inspired

::
by

::::::
studies

:::::
from

::
the

:::::::::
literature).834

:::::
Future

:::::
work

:::
can

:::::
focus

::
on

::::::::
studying

:::
the

::::::::::
relationship

:::::::
between 835

:::::::
different

::::::
families

::::
and

:::::::::::::
implementations

::
of

::::::::
detection

:::::::::
techniques 836

:::
and

::::::::
Ranflood.

:::
To

:::
this

::::
aim,

:::
one

::::::
would

::::
need

::
to

::::::::::::
systematically 837

:::::
review

:::
the

::::::::
literature

::
on

::::::::::
ransomware

:::::::::
detection,

:::::
select

:
a
:::
set

::
of 838

:::::::::::
representative

:::::::
families

::
of

:::::::::
detectors,

:::::
select

::::::::::::::
implementations 839

::
for

::::
each

::
of

:::::
these

:::::::
families,

:::
and

::::::::
establish

:::
and

:::
run

::::::::::::::::
statistically-relevant840

:::::::
batteries

::
of

:::::::::::
benchmarks. 841

:::
The

::::::::::
combination

::
of

:::
the

::::::::::
ransomware

::::::::
samples,

::
the

:::::::::
activation 842

::::::
delays,

:::
and

:::
the

:::::::
flooding

::::::::
strategies

:::::
gives

::
us

:
72 different run 843

scenarios, totalling 78 considering also the 6 baseline runs 844

where we do not let any Ranflood strategy run (called “None” 845

configurations). We run each scenario 4 times, reporting the 846

averages. Before showing the results, we detail the target op- 847

erating system and data used in the tests, the selected piece 848

of ransomware, and how we measure the loss rate in the tests. 849

5.1. Benchmarking Method 850

Target Operating System and Data— To select the 851

target operating system, we choose to adopt the one with 852

the wider market share on desktop machines in the last year 853

(at the time of writing). To find it, we used the data made 854

available by StatCounter6, which reports a marked share of 855

around 75% held by Microsoft Windows 10. Thus, we use 856

this operating system as target. 857

The target data is the set of files attacked by ransom- 858

ware. Since the ransomware samples we consider mainly 859

attacks the profile of the user in the machine, our target data 860

corresponds to a representative set of files of an ordinary 861

user (Continella et al., 2016; Kharaz et al., 2016; Akbanov 862

et al., 2019). 863

There are mainly two ways to obtain a profile of this type. 864

The first is organically, i.e., drawn from a real environ- 865

ment used by a regular user for a certain amount of time. 866

Continella et al. (2016) and other authors (Kharaz et al., 2016; 867

Akbanov et al., 2019) followed this approach, using in their 868

tests the profiles of some users who worked on the test en- 869

vironment for e.g., a week. Two main drawbacks of this ap- 870

proach are: a) it might not generate a significant amount of 871

data, since it depends on the type of activity of the user and 872

the recording timeframe, and b) it requires precautions, e.g., 873

6https://gs.statcounter.com/os-market-share#monthly-201807-20211
1.
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we need to make sure the data is anonymised, to avoid, e.g.,874

spreading sensible information of the user. The second ap-875

proach is to create the profile synthetically, but starting from876

real-world skeletons and populating them. Here, the draw-877

back is that the generated data is not organic. On the positive878

side, we do not depend on some selection of users or some879

timeframe.880

Since we choose to ditch using a detector, which would881

instruct Ranflood to act on the attack location of the ransom-882

ware, we just need to have an ordinary user profile skeleton883

and command Ranflood to ward/flood those sensible fold-884

ers (the location-based activation modality discussed in Sec-885

tion 3.2.3). Hence, we deem it appropriate to follow the sec-886

ond approach and build a synthetic, but realistic target pro-887

file.888

To do this, we built on the skeleton reported by Halsey889

(2016), who defined the main
::::::::
identified

:::
the

::::
main

::::
user paths890

and folders of the Windows 10 File System. Then, for the891

user files, we generated 2GB of data, following the indica-892

tions of Kaspersky (2021) and Scaife et al. (2016b) on the893

formats most subject to ransomware attack. Besides the for-894

mat, we also followed other guidelines to tune the profile895

for the task: we created files with names usually preferred896

by ransomware (Kroll, 2021; Anderson and McGrew, 2016)897

and, following the suggestions by (Rossow et al., 2012), we898

gave to the profile a user-interactivity imprint by installing a899

set of applications among the most used, like a browser and900

an office suite.901

In the generated profile, we have 13 folders, among which902

“Documents”, “Desktop”, “Music”, and “Pictures”, which903

we consider sensible to the user and which we flood and904

monitor to calculate the loss rate after each attack.905

Ransomware— To identify the ransomware samples for906

the tests, we used the VirusTotal Intelligence API to obtain907

the current Windows executables associated with the main908

ransomware families. We obtained a set of samples (includ-909

ing CryptoWall, TeslaCrypt, WannaCry, Certbot, NotPetya,910

and Critoni), which we tested to actually execute in our tar-911

get environment. Not all samples worked, e.g., some sam-912

ples did not receive instructions and public encryption keys913

from their control servers and did not perform any attack.914

We filtered out these samples, to only focus on active ones.915

Moreover, we excluded ransomware that forced the machine916

to restart. This is not a problem from the functional point of917

view of Ranflood (which we could instruct to start its routine918

after the reboot), but it would make the tests more unreliable,919

since we would not know any more the exact delay between920

the start of the ransomware and Ranflood. Thus, we also re-921

moved these samples. The resulting set of samples include 6922

pieces of ransomware: GandCrab, LockBit, Phobos, Ryuk,923

Vipasana, and WannaCry.924

Logs and Metrics— The final ingredients of our evalu-925

ation method are 1) the execution timeframe, i.e., how much926

time we let the ransomware and Ranflood execute and 2) the927

4 activation delays of Ranflood, to simulate the triggering928

from a detector. For the timeframe, we deemed it appropriate 929

to set it to 10 minutes
::
run

::::::::::
preliminary

:::::::::::
experiments

:::
and

::::
saw 930

:::
that

:::
10

::::::
minutes

:::
are

::::::::
generally

::::::::::
appropriate

::
to

::::::
witness

:::
the

::::
full 931

:::::
extent

::
of

:
a
::::::::::
ransomware

:::::
attack

::
on

::::::
users’

::::::::::
folders—this

::
is

:::::::
matched932

::
by

::::::
results

::::
from

::::
other

::::::::::
researchers

::::
who

::::::
verified

:::
that

:::
the

::::::
action 933

::::::::
timeframe

::
of

::::::::
different

::::::
families

:::
of

::::::::::
ransomware

::
is

:::::
within

::
4

::
to 934

:
9
:::::::
minutes

:::::::::::::::::::::::::::::::::::::::
(Zuhair and Selamat, 2019; Ahmed et al., 2020). 935

For the delay, we consider detectors that respectively require 936

the ransomware to run for 5%, 10%, 30%, and 50% of the 937

timeframe before triggering Ranflood, hence 1∕2, 1, 3, and 5 938

minutes.
::
We

:::::::
selected

:::::
these

:::::
delays

:::
to

::::
look

::
at

:::
the

:::::::::
worst-case 939

::::::::
scenarios,

::::::
starting

:::::
from

:::
the

:::::::
high-end

::::::
values

::
of

:::
the

::::::::
detection 940

::::
time

::::::::
spectrum,

::::::
ranging

::::::
around

:::::
30–40

:::::::
seconds

:::::::::::::::::::::::::::::::::::::::
(Zuhair and Selamat, 2019; Ahmed et al., 2020)941

:
,
:::
and

:::::::
looking

::
at

::::
even

::::
less

:::::::::
performant

:::::
cases

::::
with

:::
the

:::
1-,

:::
3-, 942

:::
and

::::::::
5-minute

::::::
delays. 943

The data points we want to collect in the tests are two: 944

::
the

:
number of files lost to encryption and, for copy-based 945

strategies, the number of files saved through copying (i.e., 946

when we lost the original file but have a pristine copy). To 947

compute this data, we let the piece of ransomware and Ran- 948

flood run for the length of the timeframe, we shut the test 949

machine down, and then mount the disk on a different ma- 950

chine to analyse it (this is necessary to make sure that the 951

piece of ransomware cannot modify the files any more). To 952

calculate the data loss, we compare the digests of all the files 953

in the target profile (collected beforehand) against the files in 954

the mounted drive—we use this method to find all valid files, 955

both the original and the replicas, counted once (i.e., all files 956

with the same digest count as one). 957

5.2. Testbed 958

To run the tests, we assembled a testbed made of a clus- 959

ter of test nodes with hardware representative of today’s or- 960

dinary office/desktop personal computers. The tests nodes 961

ran isolated Windows 10 virtual-machines, orchestrated by 962

a central gateway running Ubuntu 21.04 (to further avoid 963

possible interactions with ransomware samples in the clus- 964

ter). The gateway of the testbed was the only terminal with 965

network access (this avoided problems like the escape of 966

some ransomware, e.g., due to unknown network exploits, 967

and the execution of unexpected processes, e.g., update rou- 968

tines, which might interfere with the performance). Figure 4 969

reports a schema of the testbed, where “PVE” prefixes the 970

test nodes. The main point of assembling this testbed was 971

to automatise and standardise the tests and make our data as 972

reliable as possible. 973

Regarding the nodes, we used four desktop computers 974

each equipped with an Intel i3-4170 (3.70GHz) dual-core, 975

four-threads
:::::::::
four-thread

:
CPUs, 12GB of RAMand a hard 976

disk ,
::::
and

:
a
:::::
Hard

::::
Disk

:::::
Drive7

::::::
(HDD) of 500GB. These ma- 977

chines run ProxMox version 7.0-8 on GNU/Linux. We built 978

the template for the virtual machines from the one provided 979

by Microsoft of Windows version 10 (x64) Stable 1809. Each 980

7
:::
Since

::
IO

:::::::
contention

::
is

:
a
::::::::
fundamental

:::::
element

::
of

::
the

::::::
Ranflood

::::::
contrast

::::
action,

:::::
future

:::::::
empirical

:::::
studies

:::
can

::::
extend

:::
the

::::
types

::
of

:::::
storage

::::::
devices

:::
used

::
for

:::
the

:::::
testbed

::
to

::::
other

::::::::
technologies

:::
like

::::::::
Solid-State

:::::
Drives

:::::
(SSD),

::::::::
Non-Volatile

::::::
Memory

::::::
Express

:::::
(NVMe)

:::::
drives.
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PVE1

PVE2
VM2

PVE3

PVE4

VM1

VM3

VM4

ReportsOperator Gateway

Figure 4: Testbed schema. The operator connects to the Gateway to run the tests and retrieve the reports. The test nodes
(PVE*) host one virtual machine each.

node runs one virtual machine with a dual-core, four-thread981

CPU, 12GB of RAM, and 40GB of disk.982

As mentioned, the
:::
The

:
test configurations using Ran-983

flood are 72. In addition to these, we gather baseline rate-984

loss values for each ransomware, run without Ranflood, to-985

talling 78 configurations. We run each configuration 4 times986

for a total of 312 runs and gather the results for each scenario987

as the average of the related runs.988

Each test run follows the steps:989

1. we start the virtual machine and wait that the envi-990

ronment is ready to run the set malware of the run and991

Ranflood (i.e., we wait for Windows to boot properly);992

2. we start the ransomware sample and wait
:::
for the set993

delay of the run;994

3. we start Ranflood (Windows native version) with the995

set flooding strategy of the run. To maximise resource996

occupation, we launch all 13 flooding instances in par-997

allel, each targeting the sensible folders mentioned in998

Section 5.1;999

4. after 10 minutes since we started the virtual machine,1000

we shut it down;1001

5. we access the disk from the gateway and run an anal-1002

yser, called the Filechecker (available as a companion,1003

open-source tool to Ranflood3) to calculate the data1004

points of the run;1005

6. we delete the virtual machine and start the next test1006

run.1007

Notably, the Filechecker can restore the system to the1008

state before the attack by removing all files except the origi-1009

nal, valid ones and the decoy ones, that it can use to replace1010

the originals, if lost (this requires the usage of some copy-1011

based flooding strategy, cf. Section 3.2.4). Concretely, the1012

Filechecker includes two phases. First, before an attack, it1013

records all the signatures (hashes) of the files in the target1014

directories in a reference database (this is similar to how 1015

OTF snapshooting works, cf. Algorithm 2). Second, after 1016

an attack, it checks the files present on the disk against the 1017

recorded signatures. The Filechecker preserves a file if its 1018

signature corresponds to a recorded one. In
::
the

:
case of de- 1019

coy files that are copies of the original ones (which have a 1020

different path than the one corresponding to a recorded sig- 1021

nature), if the original is missing we replace it with the copy. 1022

5.3. Results and Analysis 1023

The complete set of data gathered from our experiments 1024

is available at https://doi.org/10.5281/zenodo.6587519. We 1025

report the results of our tests in Figure 5, as percentages of 1026

lost, saved, and copied files in each attack scenario. For the 1027

sake of clarity, we included only the average result computed 1028

across the multiple runs of each test, because
::
the

:
standard 1029

deviation is very low in almost all
:::::::
generally

::::
low

::::::
among

:::
the 1030

cases. Specifically, the highest standard deviation occurs in 1031

tests related to Phobos, whose average percentage standard 1032

deviation is ca. 8% (with
:
a standard deviation of that average 1033

of 13). 1034

The cells in Figure 5 are composed as follows: the cen- 1035

tral area shows the percentage of valid (non-encrypted) files. 1036

Since copy-based flooding strategies allow the restoration of 1037

lost original files, we break down the percentage of valid files 1038

into a blue one (original) and green one (restored), reporting 1039

the related percentages respectively at the bottom and at the 1040

top of the bar. The red part completes the picture, represent- 1041

ing the percentage lost. 1042

The first pieces of ransomware we comment
::
on are Gand- 1043

Crab (GC), Ryuk, and Vipasana, which share a very similar 1044

behaviour and thus can be reported as one, for the sake of 1045

brevity. They encrypt only files that we do not consider as 1046

being sensitive for the user (i.e., outside of the 13 folders 1047

monitored by the test cf. Section 5.1). Hence, the report is 1048
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::
we

::::::
report 100% saved files.1049

LockBit encrypts files following a different strategy , in1050

which
:::::::
strategy

:::::
where the malware quickly skims through the1051

folders of the user, only encrypting the first 4 KB of each1052

file. This behaviour, in unison with the relatively slow re-1053

sponse of Ranflood (which in our tests is set to start, at the1054

earliest, 30 seconds after the activation of the ransomware)1055

makes LockBit the toughest opponent against Ranflood—in1056

the
:::::
among

:::
the

::::::::::::
opponents—in

:::
the

:
future we intend to deepen1057

our research on this kind of attack modality, e.g., propos-1058

ing ad-hoc, copy-based strategies able to quickly contrast the1059

malware by restoring just the compromised portion of the en-1060

crypted files. Both the Random and On-The-Fly strategies1061

fail to contrast it—the ransomware leaves a constant 9% of1062

valid files, which it does not consider as its targets (e.g., con-1063

figuration files). The Shadow strategy is the only one able to1064

partially hinder LockBit (reaching a 48% of recovery of only1065

copied files) since it uses separate copies of the files for the1066

flooding.1067

Phobos is designed to encrypt all files in the system when1068

no countermeasure is put in place, as shown by the 0% of1069

valid files in the “None” column of the figure. The
:::::::::
interaction1070

::::
with

::
the

:
Random strategy shows an unexpected pattern. The1071

earliest activation of Ranflood
::
Its

::::::
earliest

::::::::
activation

:
achieves1072

the lowest score (0%), while late activations produce better1073

results, yet not according
:::::::::
amounting to some regular pattern:1074

the percentage of valid files jumps to 13% when the delay is1075

60 seconds, decreases to 10% for 180 seconds, to reach the1076

best value of 14% for 300 seconds. We attribute this be-1077

haviour to some internal delays of the ransomware (e.g., to1078

elude detection), which makes the 60s and 300s activation1079

time the fittest to contrast it. This phenomenon is somewhat1080

::::
more

::
or

::::
less repeated in the Shadow modality, where the 30-1081

second delay achieves a 22% recovery while the later 60-1082

second delay reaches 29%, before falling to a meagre 2% for1083

higher delays.1084

WannaCry behaves like LockBit, but it is less aggres-1085

sive, leaving more than half of the user’s files untouched1086

when left free to roam (see as usual the “None” column).1087

Ranflood obtains its highest effectiveness against WannaCry1088

::::::
Among

:::
our

::::::::::
ransomware

::::::::
samples,

:::::::::
WannaCry

:::::
seems

:::
the

::::
one1089

:::::
which

::::::::
Ranflood

:::
can

:::::::
contrast

:::
the

::::
best. Similarly to Phobos,1090

we notice that the
::
we

:::
hit

:::
the “sweet spot” for the activation1091

delay is probably hit when it collides
:::::
when

:
it
::::::::
matches with1092

some internal parameter
:::::
delay of the malware. The effec-1093

tiveness of the Random modality peaks at 73% saved files1094

when activated with a 180-second delay, On-The-Fly peaks1095

at 67% saved files when activated with a 60-second delay,1096

and Shadow reaches 94% when its activation is at the earliest1097

considered
::
at

::
its

::::::
earliest

:::::::::
activation time.1098

Copy-based Overhead and Restoration— Aside from1099

the performance benchmarks of the mitigation, we bench-1100

mark both the initial overhead derived from the snapshooting1101

routines of the On-The-Fly and Shadow flooding strategies1102

and the performance of the Filechecker (i.e., of the
:
a
:::::::
possible1103

implementation of the restoration phase). In particular, the1104

Avg. (s) SD (s)
OTF snapshooting 22.15 13.96

Shadow snapshooting 38.69 12.23
Filechecker restoration 573.9 18.38

Table 2
Average time and standard deviation in seconds of
the copy-based snapshotting

::::::::::
snapshooting

:
and restoration

(Filechecker).

former is interesting to describe the footprint of the software 1105

during the normal operations of the user. 1106

We present the performances in Table 2 as the average 1107

over eight experiments and the standard deviation of these 1108

samples (we report the baseline in the first row (30 sec.) of 1109

each table for reference). 1110

In particular, we
::
We

:
deem the overhead of both the On- 1111

The-Fly and the Shadow strategies compatible with the reg- 1112

ular operations of users (interactive) and servers (batch), as 1113

they allow for other processes to execute concurrently and do 1114

not take a lot of time to complete—this is not different from 1115

having an antivirus scan running alongside other processes. 1116

Finally, we notice that the reported measures have a small- 1117

yet-non-negligible standard deviation. Indeed, the measures 1118

are influenced by a number of
::::::
several factors which increases 1119

the stability of the performance. In particular, regarding the 1120

stability of performance of the Filechecker, we notice: 1121

• differences between the operating systems: the File- 1122

checker runs Linux mounting
::
on

::::::
Linux,

:::::
where

:::
we

:::::
mount1123

the NTFS disk of the virtual machine through the “qcow2”1124

driver, while the signatures and archive generations 1125

run directly in the Windows virtual machinepassing 1126

through ,
:::::
using

:
the virtual device; 1127

• scheduling and parallelism: the Filechecker runs in se- 1128

quential mode while the signatures and archive gener- 1129

ation run in a multithreading application. 1130

We argue that investigating the impact of these factors 1131

and increasing the performance of the Filechecker elude the 1132

scope of this paper and will be subject for future work with 1133

a more in-depth study to analyse the performance differences 1134

between the drivers and virtualized operating systems.
:::::
While 1135

::::
these

:::::::::::
performance

:::::
results

:::
are

:::::::::::
encouraging,

::
we

:::::
deem

::
an

::::::::
important1136

:::::
future

::::
work

::::::
setting

:::
out

:::::::
specific

::::
tests

::::
that

:::::
would

:::::
allow

:::
us

::
to 1137

:::::
profile

:::
the

:::::::::
algorithms

:::
and

::::::::
runtimes

::
of

:::
the

:::::
tools,

:::::
refine

:::::
them, 1138

:::
and

:::::::
increase

::::
their

:::::::::::
performance.

:
1139

5.4.
::::::::::::
Comparison

:::::
with

::::::::::
Empirical

:::::::::::
Evaluations

:::
of 1140

:::::::
Related

::::::
Work 1141

::
To

::::::::
conclude

:::
our

::::::::
empirical

::::::::::
assessment

::
of

:::::::::
Ranflood,

:::
we 1142

:::
put

:::
our

::::::
results

::
in

::::::::::
perspective

::::::
against

:::::
those

::::
from

:::::::::
empirical 1143

:::::::::
evaluations

::
of

::::::
related

:::::
work.

::
In

:::::
doing

:::
so,

:::
we

::::::::
underline

:::
that

::
it 1144

:
is
:::
not

:::::::
possible

::
to

::::::
directly

::::::::
compare

::
the

::::::
results

::
of

:::
the

:::::::::
considered 1145

::::::::::
evaluations,

:::::
given

:::
that

::::
they

:::::
have

::::
been

::::::
drawn

::::
from

:::::::
diverse 1146

:::::::
hardware

::::
and

:::::::
software

:::::::
settings,

::
on

:::::::
different

:::
sets

::
of
::::::::::
ransomware1147

:::::::
samples,

:::
and

::::
with

::::::::
disparate

::::::::::
experimental

:::::::
set-ups.

:::::::::
Moreover, 1148

::
the

::::::::::
considered

:::::
tools

:::
are

:::::::
sensibly

:::::::
different

:::
in

:::::
terms

::
of

::::
the 1149
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Figure 5: Results of the aggregated tests, loss-rate percentage—each cell shows the percentage of valid (non-encrypted) files. For
copy-based strategies we break down the percentage of valid files into a blue one (original) and

:
a green one (restored), reporting

the related percentages respectively at the bottom and at the top of the bar.
:::
The

::::::
longer

:::
the

:::::::::
blue/green

:::
bar,

:::
the

::::::
better.

:::::
phases

::::
they

:::::
target

::
to

::::::
contrast

::::::::::
ransomware

:::::::::
(detection,

:::::::::
mitigation,1150

::::::::::
restoration),

:::
the

::::::::
technique

:::
they

::::
rely

:::::
upon,

:::
and

:::
the

::::
usage

::::::::::::::::
requirement—e.g.,1151

:
a
:::::::
solution

::::
like

::::::::
Ranflood

::
is

:::::
closer

::
to

::::::::
installing

:::
an

::::::::
antivirus1152

::::
while

::::
e.g.,

::::::::
ShieldFS

::
is

:
a
:::::

more
:::::::
involved

::::
one,

::::::
which

:::::::
requires1153

::
the

::::
user

::
to

:::::::::
recompile

:::
the

::::::::
operating

::::::
system

::::::
kernel.

:
1154

::::::::::
Considering

:::
the

:::::
works

::::::
covered

::
in

::::::::
Section 2

:
,
::::::::::
summarised1155

::
in

::::::
Table 1,

:::
we

:::::::
compare

::::
with

:::::
those

::::::::
proposals

::::
that,

:::
like

::::::::
Ranflood,1156

::
are

:::::::
marked

::
as

::::::
generic

:::
(not

:::::::
tailored

::
to

:::
any

::::::
specific

::::::::::
ransomware1157

::::::
family)

:::
and

::::
that

:::::::::
implement

::
the

:::::::::
mitigation

::::::
and/or

:::::::::
restoration1158

::::::
phases.

:::::
These

:::::::::::
requirements

::::
give

::
us

:::
four

::::::
items:

::::::::
ShieldFS

:::::::::::::::::::
(Continella et al., 2016)1159

:
,
:::::::
R-Locker

:::::::::::::::::::::::::::
(Gómez-Hernández et al., 2018),

:::
the

::::
tool

::
by

::::
Lee1160

:
at
:::
al.

::::::::::::::
(Lee et al., 2019),

::::
and

::::::::
Microsoft

::::::::
controlled

:::::
folder

::::::
access

::::::::::::::
(Microsoft, 2022)1161

:
.
:::::::::::::

Unfortunately,
:::
we

:::::
could

:::
not

:::::::
retrieve

:::::::::::
experimental

:::::
data1162

::::::::
regarding

:::
the

:::
last

::::
item

::::::::::::
(Microsoft’s),

::::::::
excluding

::
it

::::
from

::::
this1163

::::::::::
comparison.

:
1164

::::::::
ShieldFS

:::
The

:::::::::
evaluation

:::::
done

::
by

::::::::::::::::::::
Continella et al. (2016) 1165

:::::
comes

:::
the

::::::
closest

::
to

::::
ours,

::::
since

::::
they

::::
also

:::::::
measure

::
the

:::::::::::
performance1166

:::::
based

::
on

:::
the

::::
ratio

::
of

:::::::::
recovered

::::
data.

::::::
Thanks

::
to
:::
its

::::::::
detection 1167

:::
and

:::::::::
shadowing

::::::::::
capabilities,

::::::::
ShieldFS

::::::
reaches

::
an

::::::::::
aggregated 1168

:::::::
recovery

:::
rate

:::
of

::::
more

::::
than

::::
90%

::::
(the

::::::
authors

:::
do

:::
not

:::::::
provide 1169

::
the

::::::::::
breakdown

::
of

::
the

:::::::::
considered

::::::::::
ransomware

::::::::
families).

:::::::::::::
Quantitatively,1170

:::::::::
aggregating

:::
the

::::
data

:::::
from

:::
our

::::::::::
experiments

:::::
gives

::
us

:::
an

::::
80% 1171

:::::::
recovery

:::
rate

:::
for

::::::::
Ranflood.

::::::::::::::
Notwithstanding

:::
the

::::
good

::::::
figures 1172

::
of

:::
the

:::
two

:::::::::
proposals,

::
we

:::::
stress

::::
that

:::
our

:::::::::
comparison

::::
can

::::
only 1173

::
be

::
at

:::
the

:::::::::
qualitative

::::
level,

:::::::
because

::::::::::
quantitative

:::::::::::
comparisons 1174

:::::
would

:::::
entail

:::
the

::::::::
definition

::
of

::::::::
common

:::::
testing

::::::::::::
environments 1175

:::
and

::::::::::::
infrastructures.

:
1176

::::::::
R-Locker

::::::::
R-Locker

::::::::::
implements

:
a
::::::::
detection

:::
and

:::::::::
mitigation 1177

::::::::::
mechanism,

::::
based

:::
on

:::
the

:::::::::::::::
distribution/spread

::
of

::::::::
honeypot

:::
files 1178

::::
used

::
for

::::
both

:::
the

::::::::
detection

:::
and

::::::::
mitigation

:::::::
phases.

:::
The

::::::
authors 1179
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::::
only

:::::
report

:::
the

:::::::::
aggregated

::::::::
detection

::::
rate,

::::::
100%,

:::
but

:::
do

:::
not1180

:::::
report

:::
the

::::
ratio

:::
of

:::::::::::
saved-vs-lost

:::::
files.

::::::
While

:::
the

::::::::
reported1181

:::::
figure

::
is

:::::::::
impressive,

:::::
there

::
is

:
a
::::::
caveat,

:::::::
reported

:::
by

:::
the

:::::
same1182

::::::
authors,

::::::
which

:
is
::::
that

:::
the

:::::::
detection

:::::
phase

:::
can

:::
be

:::::::
bypassed

:::
by1183

:::
any

::::::::::
ransomware

:::
that

:::::::
encrypts

:::
the

::::
files

::::::::
randomly,

:::::::
making

:::
the1184

::::::::::
performance

::::
drop

:::::::::::
significantly.

:::::
Since

::::::::::::::::::::::::::
Gómez-Hernández et al. (2018)1185

::::
focus

:::
on

:::
the

::::::::::
performance

:::
of

:::::::
detection

:::::
while

:::
we

::::::::::
benchmark1186

::
the

:::::::::
mitigation

::::::
phase,

:::
we

:::::
cannot

:::::::
directly

:::::::
compare

::::
with

:::::
their1187

::::::
results.1188

::::
Tool

:::
by

::::
Lee

::
et

:::
al.

:::
The

::::
tool

::
by

::::
Lee

::
et

:::
al.

:::::::::
implements

::
a1189

::::::
Moving

::::::
Target

:::::::
Defence

:::::::
strategy,

:::::
based

::
on

::::::::
changing

:::
the

::::
type1190

::
or

::::::::
extension

::
of

:::
the

:::
file

::
to

::::::
deceive

:::
the

:::::::::::
ransomware.

:::
Lee

::
et
:::
al.1191

:::::
report

:::::::::
aggregated

::::
data

::
as

:::::::
“defence

:::::
rate”,

:::::
where

::::
they

::::::::::
preemptively1192

:::
run

::::
their

:::::::
solution

:::::::::
(changing

:::
the

::::
type

:::
and

::::::::
extension

::
of

::
a
:::
set1193

::
of

:::::::
selected

:::::
files),

:::::
then,

::::
they

:::
let

:::
the

::::::::::
ransomware

::::
run

:::
for

::
51194

::::::
minutes

::::
and

::::::::
calculate

:::
the

::::::
number

:::
of

::::::::
encrypted

:::::
files.

:::::
They1195

:::::
report

:
a
::::
total

::
of

::::::
98.6%

:::::::
“defence

:::::
rate”.

:
1196

::::
Also

:::::::::
comparing

:::
our

:::::::::
evalutation

:::
of

:::::::
Ranflood

::::
and

:::
that

:::
of1197

:::
Lee

::
et

::
al.

:
is
::::::::
difficult,

::::
since

:::
the

:::::
latter

:::
run

:::
the

::::
tool

::::::
before

:::
the1198

::::::::::
ransomware,

:::::
while

:::
we

::::
test

::::::::
Ranflood

::::
after

:::
the

:::::::::::
ransomware1199

:::::
started

:::
the

::::::
attack,

:::::::::
simulating

:::
the

:::::::::
triggering

::::
from

:
a
::::::::
detector.1200

1201

6. Discussion and Conclusion1202

We presented Data Flooding against Ransomware (DFaR)1203

as a family of methods to contrast ransomware that mixes1204

dynamic honeypots, resource contention, and moving target1205

defence. We detailed the three phases of detection, miti-1206

gation, and restoration of DFaR. To show the applicability1207

of DFaR we also introduced instantiations of the mitigation1208

and restoration phases as implemented within a tool called1209

Ranflood—specifically Ranflood implements three flooding1210

strategies of which two enable the restoration phase. We also1211

showed preliminary but thorough benchmarks that demon-1212

strate that Ranflood (and its three flooding strategies) is ef-1213

fective in contrasting the action of different kinds of ransom-1214

ware.1215

Ranflood is more of a stepping stone than the end of1216

the road. Indeed, as presented in Section 3.2.2, one can1217

use DFaR to detect ransomware. Future work in this di-1218

rection goes towards studying different instantiations of the1219

DFaR detection paradigm and investigating their interplay:1220

a) developing work similar to the one we undertook with1221

Ranflood—implementing and empirically studying the ef-1222

fectiveness of the static and dynamic modalities of detection1223

(cf. Section 3.2.2); b) investigating ways of mixing DFaR1224

detection with other existing approaches from the literature,1225

in particular, to implement the patrolling process of the dy-1226

namic modality; c) testing the effectiveness of detection in-1227

stantiations based on different combinations of the dynamic1228

and static modalities, depending on disparate platforms of1229

execution, contexts of application, and ransomware families.1230

::::::::::
Exfiltration

:::::::::::
ransomware While

:
, in this work

:
, we focussed1231

on crypto-ransomware, there is another growing category1232

of ransomware that is becoming more and more threaten-1233

ing for organisation: exfiltration-based ransomware. Indeed, 1234

given the constant threat by crypto-ransomware, organisa- 1235

tions started contrasting them with reliable backup systems, 1236

which
::::::
backup

:::::
plans.

:::
Of

::::::
course,

:::
the

:::::
latter do not hinder their 1237

diffusion , but
:::
the

::::::::
diffusion

::
of

:::::::::::
ransomware,

:::
but

::::
they

:
curb 1238

the motivation for
::
of the attackers to strike: the victims do 1239

not pay any more, since
:
;
:::
the

::::::
victims

:::
are

::::
less

:::::
likely

::
to

:::
pay

::
if 1240

they can restore (most of) their encrypted files from backups. 1241

This motivated the recent surge of new exfiltration ransom- 1242

ware, whose objective is not to prevent users from accessing 1243

their data but to abduct their sensitive files and threaten to 1244

disclose their contents, unless the victims pay the prover- 1245

bial ransom (Michael, 2021). While
:::::::
currently

:
tailored for 1246

crypto-ransomware, we conjecture that the Random strategy 1247

(cf. Section 4)
:::::
DFaR

:::
and

::::::::
Ranflood can also effectively con- 1248

trast exfiltration-based attacks , since it can induce
::
by

::::::::
inducing 1249

the malware to transmit decoy files rather than those of the 1250

user. In the process, it wastes
::
the

::::
tool

:::::
would

:::::
make

:::
the

::::::::::
ransomware1251

::::
waste

:
disk and network IO access, slowing down the ex- 1252

filtration of worthy payload. Given the rising importance 1253

of exfiltration-based attacks, we envision future work also 1254

in this direction. The main work
::::
Work, here, regards the 1255

introduction and benchmarking of
:::
can

::::
start

::
by

::::::::::::
benchmarking 1256

the performance of (i. e., the effectiveness in preventing 1257

data exfiltration) a set of Random flooding strategies , which 1258

employ different algorithms for the synthesis of decoy files 1259

and logics for structuring folders and allocating files.
:::
the 1260

:::::::
available

:::::::
flooding

::::::::
strategies

::
of

::::::::
Ranflood

::
in

::::::
limiting

::::
data

:::::::::
exfiltration.1261

:::::
Then,

:::
one

:::
can

::::::::
introduce

:::
new

::
or
::::::
refined

:::::::
version

::
of

::
the

::::::::
presented1262

:::::::
flooding

::::::::
strategies

:
to
:::::::::
maximise

::
the

:::::::
contrast

::::
they

::::::
provide

::::::
against1263

::::::::::::::
exfiltration-based

::::::
attacks

::::
(e.g.,

:::
on

:::
the

::::::
content

::
of

:::::
decoy

:::::
files, 1264

::::
their

::::::
folders

::::::
layouts,

:::::
etc.).

:::
To

::
do

::::
this,

::::::::
advanced

:::::::
versions

:::
of 1265

:::::::
Ranflood

:::
(in

:::::::
synergy

::::
with

::::::::
detectors)

::::
can

:::::
profile

:::
the

::::
type

:::
of 1266

:::::::
malware

::::
that

::
is

::::::::
attacking

:::
and

::::
tune

::::::::
flooding

::::::::
strategies

::::
that 1267

:::::::
minimise

:::
its

:::::
effect.

::::
For

:::::::
example,

::::
one

:::
can

::::::
refrain

::::
from

:::::
using 1268

:::::::::
copy-based

::::::::
strategies

:::::
when

::::::
dealing

::::
with

:::::::::
exfiltration,

::
to

:::::
avoid 1269

::
the

:::::::::
possibility

::
of

::::::::
providing

:::::::
sensible

::::::
content

::
to

:::
the

::::::::::
ransomware 1270

::
via

::::::
decoy

::::::
copies

::
of

:::
the

::::::
actual

::::
files

::
of

:::
the

:::::
user.

:::::::::
However, 1271

::
we

:::::::::
underline

:::
that

::::
the

:::::
matter

::::
can

:::::
more

:::::::
nuanced

::::
than

:::::
this. 1272

::::::
Indeed,

:::::
when

:::
we

::::::
induce

::::
the

::::::::::
ransomware

:::
to

:::::::
exfiltrate

::::
the 1273

::::
same

:::::::
content

:::
over

::::
and

::::
over,

:::
we

:::
are

:::::::
making

::
the

:::::::::::
ransomware 1274

::::
waste

:::::
time

:::
and

:::::::::
bandwidth

:::
to

:::::
obtain

:::
the

:::::
same

:::::::::::
information. 1275

:::::
Future

:::::
work

::
on

:::::::::
exfiltration

::::::::::
ransomware

::::
shall

:::::::::
investigate

::::
this 1276

::::::
matter,

::::
e.g.,

:::::::
quantify

:::
the

:::::
ratio

:::::::
between

:::::::::
exfiltrated

:::::::
content 1277

:::
and

::::::
wasted

:::::::::::::
bandwidth/time

:::
due

::
to

:::::::::
copy-based

:::::::
flooding

::::::::
strategies.1278

1279

On a more general note, we foresee studying the inter- 1280

play between detection and mitigation, so that the former can 1281

tune the flooding strategy of the latter. The main example, 1282

here, is a detector that “understands” the patterns of the at- 1283

tacking ransomware, and informs the mitigation to use spe- 1284

cific flooding modalities that have been empirically demon- 1285

strated to work best against that kind of ransomware. Refer- 1286

ring to the previous paragraph, a detector able to discrimi- 1287

nate between crypto- and exfiltration-based ransomware can 1288

instruct the mitigation tool to use copy-based strategies rather 1289

than random-based ones. 1290
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::::::
Besides

:::::::::::
investigating

:::
the

::::::::
functional

::::::
aspects

::
of

:::::
DFaR

::::::::
solutions,1291

::
we

:::::
deem

:
it
:::::::::
important

:
to
:::::
study

:::
the

::::::
aspects

::::::
related

::
to

::::::::::::::
human-computer1292

:::::::::
interaction

::::
with

:::::::
Ranflood

::::
and

::::
other

::::::::::
DFaR-based

::::::::::
prototypes.1293

:::::
These

::::::
aspects

::::::
include

::::::
letting

:::
the

:::
user

:::::
know

:::::
when

:
a
::::::::
detection1294

:::::::
instance

:::::
starts,

:::
on

:::::
which

::::::
folders

:::
the

:::::::
detector

::::::::
operates,

::::
and1295

::::
what

::::
files

:::
the

::::::::
software

::::::
creates

::
as

:::::::
decoys.

::::
The

:::::
same

:::::
goes1296

::
for

:::
the

::::::::::
mitigation,

:::::
where

:::
we

::::::
should

::::::
inform

:::
the

::::
user

:::
of

:::
the1297

:::::::
ongoing

:::::
attack

:::
and

:::
the

:::
fact

:::
that

:::
the

:::::::
software

::
is

:::::::
flooding

:::::
which1298

:::::
folders

::
of
:::
the

:::::::
attacked

::::::::
machine.

:::::::::::
Experiments

:::::
should

:::::::::
investigate1299

::::
both

::::
what

:::
are

::
the

::::
best

:::::::::
techniques

::
to

:::::::::::
communicate

:::
this

::::::::::
information1300

::
to

:::
the

:::
user

::::
and

::::
what

:::
are

:::
the

::::
best

:::::
ways

::
to

::::::::
stimulate

:::
the

::::
user1301

::
in

:::::::
adopting

::::::
secure

:::::::::
behaviour,

:::::
e.g.,

::
to

::::::
inform

:::::
users

::
of

::::
the1302

:::::::
ongoing

:::::
attack

:::
and

:::::
report

:::
the

::::
issue

::
to
::::::
system

:::::::::::::
administrators.1303

1304

Finally, future work can focus on the restoration phase of1305

DFaR, e.g., following the idea of implementing a fingerprint-1306

ing feature in the mitigation and restoration phase
:::::
phases,1307

which dispenses the user from relying on additional resources1308

:::
than

:::
the

:::::
decoy

::::
files

:::::::::
themselves (cf. Section 3.2.4). For instance,1309

if the resource is lost, the user cannot perform the restoration1310

step; as an example, this case was represented by the list of1311

file signatures we depended upon for the execution of the1312

restoration tool we benchmarked in this paper (losing that1313

file would
::::
This

:
is
::::::::::
exemplified

::
by

:::
our

:::::
naïve

:::::::::::::::::::
implementations—e.g.,1314

::
the

::::::::::
On-The-Fly

::::::::::
copy-based

:::::::
strategy

:::
and

:::
the

:::::::::
restoration

::::
tool1315

:::::::::::::::::
(Filechecker)—which

::::
rely

::
on

:
a
:::
list

::
of

:::::::::
signatures

::
of

::
the

:::::::
original1316

::::
files,

::::::
whose

:::
loss

::::::
could prevent us from carry out with the1317

restoration phase)
::::::::
executing

:::
the

:::::::::::::::::
flooding/restoration

:::
step

:::
in1318

:::
our

::::::::::
experiments.1319
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